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Characteristic features of the process of formation of the temperature field at the boundary of a solid
body simulated by a homogeneous half-space with a "thermally thin" coating are studied by methods
of mathematical modeling in realization of the pulsed modes of heat exchange with the environment.

An important place in the theory of heat conduction is occupied by investigations of the temperature
fields in solid bodies, at the boundaries of which nonstationary modes of heat exchange with the environment
that lead to a time variation of the heat-transfer coefficient are realized [1−31]. In particular, the necessity of
accounting for the dependence of the heat-transfer coefficient on time arises in problems of heat transfer in
the presence of high-temperature effects accompanied by destruction of the surface layers of a thermally
loaded solid body. Such situations can lead not only to activation or deterioration of the conditions of heat
exchange with the environment but also to the specific features of evolution of the temperature profile in the
process of its formation [31].

Practical realization of nonstationary modes of heat exchange with the environment can also be asso-
ciated with destruction of the coating of a solid body (a layer of thermoinsulating material deposited on a
heat-insulated surface) in the process of intense surface heating of it [32−35]. Here it should be noted that use
of analytical methods of solution of problems of the considered class with account for the functional depend-
ence of the heat-transfer coefficient on time leads to the necessity of overcoming difficulties of a fundamental
character [28].

The main aim of the conducted investigations was to study the characteristic features of the process
of formation of the temperature field at the boundary of a solid body simulated by a half-space with a "ther-
mally thin" coating in realization of the pulsed modes of heat exchange with the environment and in the
presence of ideal thermal contact in the half-space−coating system.

The object of the investigations was the simplest one-dimensional mathematical model of the studied
process

∂θ (ξ, Fo)
∂Fo

 = 
∂2θ (ξ, Fo)

∂ξ2  ,   Fo > 0 ,   ξ > 0 ;

∂θ0 (ξ, Fo)

∂Fo
 = a2 

∂2θ0 (ξ, Fo)

∂ξ2  ,   Fo > 0 ,   − h < ξ < 0 ;

θ (ξ, 0) = 0 = θ0 (ξ, 0) ,   θ (0 + 0, Fo) = θ0 (0 − 0, Fo) ;
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∂θ (ξ, Fo)
∂ξ



 ξ=0+0

 = Λ 
∂θ0 (ξ, Fo)

∂ξ


 ξ=0−0

 ,   
∂θ0 (ξ, Fo)

∂ξ


 ξ=−h+0

 = Bi (Fo) 

θ0 (ξ, Fo) ξ=−h+0 − 1



 ,

(1)

where θ(ξ, Fo) � L2[0, ∞], i.e., for each fixed value Fo ≥ 0 the function θ(ξ, Fo) is integrable with the
square in the spatial variable ξ 2 [0, ∞):

ξ = 
x

x∗
 ,   Fo = 

κt

x∗
2 ,   θ = 

T − T0

Tenv − T0

 ,   θ0 = 
Tcoat − T0

Tenv − T0

 ,  a2 = 
κcoat

κ
 ,   Λ = 

λcoat

λ
 ,   Bi = 

α
λcoat

 x∗  ,   h = 
l

x∗
 ;

Bi (Fo) =  ∑ 

k=0

N

 Hk 


J (Fo − Fo(k)) − J (Fo − Fo(k+1))



  ,

0 < Fo(0) < Fo(1) < ... < Fo(N) < Fo(N+1) = + ∞ ,   N 2 0, 1, ...  ,

Here N, {Hk}k=0
N , and {Fo(k)}k=0

N  are the known constants and J(Fo) is the unit function − the Heaviside func-
tion [36].

The assumption of the presence of a "thermally thin" coating allows one to realize the idea of "con-
centrated capacity" [27, 37], according to which the integral-mean temperature over the coating thickness can
be taken equal to the temperature at its boundary, i.e.,

sθ (Fo)t =
∆
 
1
h

  ∫ 
−h

0

 θ0 (ξ, Fo) dξ = θ0 (0 − 0, Fo) = θ0 (− h + 0, Fo) .

Thus, the initial mathematical model (1) can be simplified and transformed to the following:

∂θ (ξ, Fo)
∂Fo

 = 
∂2θ (ξ, Fo)

∂ξ2  ,   Fo > 0 ,   ξ > 0 ;

θ (ξ, 0) = 0 ;

∂θ (ξ, Fo)
∂ξ



 ξ=0

 = γ−1 β (Fo) 

θ (ξ, Fo) ξ=0 − 1



 + γ−1 ∂θ (ξ, Fo)

∂Fo


 ξ=0

 ,

(2)

where

θ (ξ, Fo) 2 L2 [0, ∞) ;   β (Fo) =
∆
 (a2 ⁄ h) Bi (Fo) ;   γ =

∆
 a2 ⁄ (Λh) ;

β (Fo) =  ∑ 

k=0

N

 βk 


J (Fo − Fo(k)) − J (Fo − Fo(k+1))



  ;   βk = Hk 

a2

h
 .

The mathematical model (2) is a mixed problem of nonstationary heat conduction in which the pres-
ence of a "thermally thin" coating is allowed for by the generalized boundary condition at ξ = 0, which
explicitly involves the time derivative of temperature. With account for the initial assumption of the form of
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the functional dependence β = β(Fo), it can be ascertained [38] that in the standard class of functions there
also exists a single solution of problem (2). In order to find this solution, by the linearity of the considered
problem, we can use the known approach [36]: to assume that β(Fo) = β0 in problem (2) and find its solution
θ0(ξ, Fo), Fo ≥ Fo(0) = 0, which is sought when 0 ≤ Fo < Fo(1); to assume that β(Fo) ≡ β1 in problem (2) and
with the initial condition θ1(ξ, Fo(1)) = θ0(ξ, Fo(1)) to find its solution θ1(ξ, Fo), Fo ≥ Fo(1), which is sought
when Fo(1) ≤ Fo < Fo(2), and so on. But due to the cumbersome form of the analytical expressions obtained in
direct use of this approach and the laboriousness of numerical realization of them, in order attain the prime
to goal of the investigations we used the following considerations.

Let

W (ξ, s) =
∆

 L [θ (ξ, Fo)] ≡ ∫ 
0

∞

exp (− s Fo) θ (ξ, Fo) d Fo (3)

be the integral Laplace transform [36] of the function θ(ξ, Fo) that, according to (2) and (3), satisfies the
equation

sW (ξ, Fo) = 
∂2W (ξ, s)

∂ξ2  ,   ξ > 0 ,
(4)

the boundary condition

γ 
∂W (ξ, s)

∂ξ
 = L [β (Fo) θ (ξ, Fo)] − L [β (Fo)] + sW (ξ, s) ,   ξ = 0 , (5)

and for each fixed value of the parameter s belongs to the class of functions L2[0, ∞) integrated with the
square in the spatial variable ξ 2 [0, ∞).

The solution W(ξ, s) of Eq. (4) from the class L2[0, ∞) has the following form:

W (ξ, s) = V (s) exp (− ξ √ s  ) , (6)

where V(s) is the integral Laplace transform of the function θ(0, Fo) setting the temperature distribution at
the boundary ξ = 0, i.e.,

V (s) = W (0, s) =
∆
 L [θ (0, Fo)] .

(7)

In this case, according to (5)−(7), the transform V(s) must satisfy the relation

(s + γ √ s  ) V (s) + L [β (Fo) θ (ξ, Fo)] = L [β (Fo)] , (8)

i.e., with account for (6) we can ascertain that the initial problem will be solved in the integral Laplace trans-
forms if we find solution of Eq. (8), where β(Fo) is a known piecewise-continuous function.

Then let the function

θk (Fo) =
∆

 θ (0, Fo) 


J (Fo − Fo(k)) − J (Fo − Fo(k+1))





(9)

specify the temperature at the boundary ξ = 0 for Fo(k) ≤ Fo < Fo(k + 1) and k = 0 : N
____

, and
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Vk (s) =
∆
 L [θk Fo] ≡    ∫ 

Fo
(k)

Fo
(k+1)

  exp (− s Fo) θ (0, Fo) d Fo
(10)

be its transforms. In this case, with account for (7), (9), and (10) we obtain

θ (0, Fo) =  ∑ 

k=0

N

 θk (Fo) ;   V (s) =  ∑ 

k=0

N

 Vk (s) . (11)

Moreover, according to (9)−(11) and [36], the equalities

β (Fo) θ (0, Fo) =  ∑ 

k=0

N

 βk θ (0, Fo) 


J (Fo − Fo(k)) − J (Fo − Fo(k+1))



  =  ∑ 

k=0

N

 βk θk (Fo) ,

L [β (Fo) θ (0, Fo)] =  ∑ 

k=0

N

 βk Vk (s) ,

L [β (Fo)] =  ∑ 

k=0

N

 βk 
1
s

 


 exp (− s Fo(k)) − exp (− s Fo(k+1))



  ,

occur, with account for which relation (8) can be represented in the form of the equation with N + 1 un-
knowns {Vk(s)}k=0

N :

   ∑ 

k=0

N

 



(s + γ √ s  + βk) Vk (s) − βk 

1
s
 [exp (− s Fo(k)) − exp (− s Fo(k+1))]




 = 0 . (12)

In this case, according to (10), the unknowns {Vk(s)}k=0
N  which enter Eq. (12) are not independent and the

principal scheme of their relations has the following form: V0(s) ] V1(s) ] ... ] VN(s). Therefore, to find the
transforms {Vk(s)}k=0

N , i.e., to solve Eq. (12), we use the successive procedure. We also note that the initial
assumption on the "thermal thickness" of the coating corresponds to the presence of two real roots

µ1k = 0.5 (γ + √γ2 − 4βk ) ,   µ2k = 0.5 (γ − √γ2 − 4βk ) (13)

for the equation

µ2 + γµ + βk = 0 ,   k = 0: N
____

 .

Thus,

1

s + γ √ s  + βk

 = 
1

√γ2 − 4βk

 


1

√ s  + µ2k

 − 
1

√ s  + µ1k




 , (14)

where the real constants µ1k and µ2k are determined by equalities (13) for each k = 0 : N
____

.
In the first stage of realization of the successive procedure of solution of Eq. (12), we set N = 0,

which corresponds to Fo(0) = ∞ and β(Fo) ≡ β0. Having denoted the solution of Eq. (12) by V 0
∞(s) (with the
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assumption made) and its inverse transform by θ0
∞(Fo), we arrive at the following equation for determination

of the transforms V 0
∞(s):

(s + γ √ s  + β0) V0
∞ (s) − s−1 β0 = 0 .

Consequently, with account for (14) and (13) we have

V0
∞ (s) = 

β0

s (s + γ √ s  + β0)
 = 

β0

√γ2 − 4β0

 




1

s (√ s  + µ20)
 − 

1

s (√ s  + µ10)



 . (15)

Having applied the L−1-operator of the inverse integral Laplace transform to the right- and left-hand sides of
equality (15) [36], we find the function

θ0
∞ (Fo) = 

β0

√γ2 − 4β0

 




1

µ20

 [1 − exp (µ20
2  Fo) erfc (µ20 √Fo )] −

− 
1

µ10

 [1 − exp (µ10
2  Fo) erfc (µ10 √Fo  )]




 ,   Fo ≥ Fo(0) = 0 , (16)

where ercf {u} = 
2
√π

 ∫ 
u

∞

exp (−z2)dz is the additional Gauss error function which for 0 = Fo(0) ≤ Fo < Fo(1)

coincides with the solution θ0(Fo) of problem (2) at ξ = 0, i.e.,

θ0 (Fo) = θ0
∞ (Fo) 



J (Fo − Fo(0)) − J (Fo − Fo(1))



  .

(17)

Thus, the solution of problem (2) at ξ = 0 and 0 ≤ Fo < Fo(1) is fully determined by equalities (17),
(16), and (13). Moreover, according to (17), there occurs the equality

V0 (s) = V0
∞ (s) − Ψ0 (s) ,   Ψ0 (s) =

∆
 L [θ0

∞ (Fo) J (Fo − Fo(1))] , (18)

where the transform Ψ0(s) with account for (16) can be represented in explicit form, but its further use lacks
any prospects. We also note that equalities (18) and (15) allow transformation of Eq. (12) to the following:

   ∑ 

k=1

N

 



(s + γ √ s  + βk) Vk (s) − βk 

1
s
 [exp (− s Fo(k)) − exp (− s Fo(k+1))]




 =

= (s + γ √ s  + β0) Ψ0 (s) − s−1 β0 exp (− s Fo(1)) . (19)

In the second stage we set N = 1, which corresponds to Fo(2) = ∞ and β(Fo) = β0{1 − J(Fo − Fo(1))}
+ β1J(Fo − Fo(1)). Having denoted the solution of Eq. (19) by V 1

∞(s) (with the assumption made) and its
inverse transform by θ1

∞(Fo), we arrive at the following equation for determining the transform V 1
∞(s):

(s + γ √ s  + β1) V1
∞ (s) − s−1 β1 exp  (− s Fo(1)) = (s + γ √ s  + β0) Ψ0 (s) − s−1 β0 exp (− s Fo(1)) ,

from which we find
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V1
∞ (s) = 

β1 − β0

s (s + γ √ s  + β1)
 exp (− s Fo(1)) + 




1 − 

β1 − β0

s + γ √ s  + β1




 Ψ0 (s) . (20)

Having applied the L−1-operator of the inverse integral Laplace transform to the right- and left-hand sides of
the obtained equality with account for (14) and (18) and having used the convolution theorem [36], we find
the function

θ1
∞ (Fo) = 

β1 − β0

√γ2 − 4β1

 




1

µ21

 [1 − exp [µ21
2  (Fo − Fo(1))] erfc (µ21 √ Fo − Fo(1)  )] −

− 
1

µ11

 [1 − exp [µ11
2  (Fo − Fo(1))] erfc (µ11 √ Fo − Fo(1)  )]




 + θ0

∞ (Fo) −

− 
β1 − β0

√γ2 − 4β1

   ∫ 
Fo

(1)

Fo

  [µ11 exp [µ11
2  (Fo − τ)] erfc (µ11 √Fo − τ  ) −

− µ21 exp [µ21
2  (Fo − τ)] erfc (µ21 √Fo − τ  )] θ0

∞ (τ) dτ ,   Fo ≥ Fo(1) , (21)

which for Fo(1) ≤ Fo ≤ Fo(2) coincides with the solution of problem (2) at ξ = 0, i.e.,

θ1 (Fo) = θ1
∞ (Fo) 



 J (Fo − Fo(1)) − J (Fo − Fo(2))



  .

(22)

In this case, the function θ0
∞(Fo) and the values of the quantities µ11 and µ21 are determined according to (16)

and (13), respectively.
In the integral Laplace transforms, we represent equality (22) as

V1 (s) = V1
∞ (s) − Ψ1 (s) ,   Ψ1 (s) = L [θ1

∞ (Fo) J (Fo − Fo(2))] , (23)

where the transform Ψ1(s) is fully determined according to (21). Moreover, according to (23) and (20), we
transform Eq. (19) to the following:

   ∑ 

k=2

N

 



(s + γ √ s  + βk) Vk (s) − βk 

1
s

 [exp (− s Fo(k)) − exp (− s Fo(k+1))]



 =

= (s + γ √ s  + β1) Ψ1 (s) − s−1β1 exp (− sFo(2)) . (24)

Having compared Eqs. (19) and (24), we arrive at the following conclusion: if the index k takes successively
values 2, 3, ..., N, then

θk (Fo) = θk
∞ (Fo) 



 J (Fo − Fo(k)) − J (Fo − Fo(k+1))



  ,

θk
∞ (Fo) = 

βk − βk−1

√γ2 − 4βk

 




1

µ2k

 [1 − exp [µ2k
2  (Fo − Fo(k))] erfc (µ2k √ Fo − Fo(k)  )] −
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− 
1

µ1k

 [1 − exp [µ1k
2  (Fo − Fo(k))] erfc (µ1k √ Fo − Fo(k)  )]




 + θk−1

∞  (Fo) −

− 
βk − βk−1

√γ2 − 4βk

  ∫ 
Fo

(k)

Fo

  [µ1k exp [µ1k
2  (Fo − τ)] erfc (µ1k √Fo − τ  ) −

− µ2k exp [µ2k
2  (Fo − τ)] erfc (µ2k √Fo − τ  )] θk−1

∞  (τ) dτ ,   Fo ≥ Fo(k) ,

where for k = 2 the function θ1
∞(Fo) is determined by equality (21) and the values of the quantities µ1k and

µ2k are found by (13). Since equality (11) occurs, the initial problem of determination of the temperature θ(0,
Fo) at the boundary of a solid body modeled by a half-space with a "thermally thin" coating in realization of
the pulsed modes of heat exchange with the environment is fully solved.

We consider some results of the investigations with that reflect the most characteristic features of the
process of formation of the temperature profile θ(0, Fo) at the boundary of a half-space with a "thermally
thin" coating in realization of the pulsed modes of heat exchange with the environment.

Figure 1 presents the dependence of the temperature θ(0, Fo) of the half-space boundary on the
Fourier number in the pulsed mode of heat exchange with the environment characterized by the functional
dependence

β (Fo) = β0 

1 − J (Fo − 1)


 + β1 


J (Fo − 1) − J (Fo − 2)


 + β2 J (Fo − 2)

for different values of the parameters β0, β1, and β2. In this case, the inequality βi > βi+1 corresponds to de-
terioration of the conditions of heat exchange with the environment on the (i + 1)th time interval, and the
inequality βi < βi+1 corresponds to improvement of them.

The improvement of the heat-exchange conditions is accompanied by a sharp increase in the tempera-
ture at the half-space boundary, especially in the initial stage (see Fig. 1, curve 1 for 0 ≤ Fo < ∞ and curve 3
for 0 ≤ Fo < 2). The deterioration of the heat-exchange conditions leads to the formation of the characteristic
relaxation zone (see Fig. 1, curve 3 for 2 ≤ Fo < ∞ and curve 2 for 0 ≤ Fo < ∞). In this case, the duration of
the period of a monotonic decrease in the temperature in this zone is determined by both the quantity

Fig. 1. Dependence of the temperature θ(0, Fo) of the boundary ξ = 0
on the Fourier number Fo in the pulsed mode of heat exchange with the
environment for N = 2, Fo(1) = 1, Fo(2) = 2, γ = 5, and different values
of the parameters β0, β1, and β2: 1) β0 = 1, β1 = 2, and β2 = 4; 2) 4, 2,
and 1; 3) 1, 2, and 1.
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(βi − βi+1) and the duration (Fo(i+1) − Fo(i)) of the previous phase. But in realization of any pulsed mode of
heat exchange with the environment determined by the functional dependence

β (Fo) =  ∑ 

k=0

N

 βk 


J (Fo − Fo(k)) − J (Fo − Fo(k+1))



  ,

where Fo(0) = 0 and Fo(N+1) = ∞, for the temperature θ(0, Fo) at the half-space boundary the asymptotic
estimate (for large Fo values)

θ (0, Fo) D 1 − 
1

βN √πFo
 ,

occurs, i.e., the qualitative character of the behavior of the function θ(0, Fo) for Fo → ∞ does not depend on
the realized modes of heat exchange with the environment: θ(0, Fo) → 1 when Fo → ∞.

NOTATION

x, spatial variable; t, time; T, temperature; ξ = x ⁄ x∗ , dimensionless variable; Fo = κt ⁄ x∗2, Fourier num-
ber; Bi = αx∗  ⁄ λcoat, Biot number; x∗ , chosen scale unit; l, coating thickness; λ, thermal conductivity; κ, ther-
mal diffusivity; α = α(t), heat-transfer coefficient. Subscripts: coat, coating; env, environment.
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